organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A zwitterionic form of *N*-(4-pyridyl)benzenesulfonamide

Hai-Jun Yu,^a* Jin-Zhe Chen,^b Jim Simpson,^c Jiang-Sheng Li^d and Guo-Yi Bai^e

^aChemical Engineering Department, Shijiazhuang Vocational Technology Institute, Shijiazhuang, People's Republic of China, ^bComputer Center, Hebei University Affiliated Hospital, Baoding, People's Republic of China, ^cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, ^dSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China, and ^eCollege of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China

Correspondence e-mail: yuhaijun64@yahoo.com.cn

Received 24 July 2007; accepted 31 July 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.124; data-to-parameter ratio = 11.9.

The title compound, $C_{11}H_{10}N_2O_2S$, crystallizes as a zwitterionic tautomer, *N*-(4-pyridinio)benzenesulfonamidate, with the pyridine N atom protonated and the amide N atom deprotonated. There is evidence for conjugation between the anionic N atom and the pyridinium ring. In the crystal structure, intermolecular N-H···N hydrogen bonds link the molecules into chains along the *c* axis. Weak C-H···O and C-H··· π interactions further stabilize the structure.

Related literature

For the preparation of the compound see Li (2007). Aryl sulfonamides with the amide N atom deprotonated have been reported previously, both as salts with suitable cations (Heren *et al.*, 2006; Hannan & Talukdar, 1992) and in zwitterionic forms (Amendola *et al.*, 2005; Lindley *et al.*, 1977; Schaumann *et al.*, 1975).

Experimental

Crystal data

$C_{11}H_{10}N_2O_2S$
$M_r = 234.27$
Monoclinic, $P2_1/c$
a = 12.238 (6) Å

b = 7.459 (4) Å c = 12.124 (6) Å $\beta = 110.231 (7)^{\circ}$ $V = 1038.5 (8) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.30 \text{ mm}^{-1}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.943, *T*_{max} = 0.965

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.124$ S = 1.072139 reflections 180 parameters 73 restraints T = 294 (2) K $0.20 \times 0.16 \times 0.12$ mm

5733 measured reflections 2139 independent reflections 1685 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.40\ \text{e}\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.32\ \text{e}\ \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the pyridinium ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots N2^{i}$	0.82 (3)	1.99 (3)	2.795 (3)	170 (3)
C2−H2···O2 ⁱⁱ	0.93	2.52	3.168 (3)	128
$C5 - H5 \cdots O1^{iii}$	0.93	2.60	3.221 (3)	125
C4−H4···O1 ⁱⁱⁱ	0.93	2.61	3.232 (3)	125
$C5 - H5 \cdots O2^{i}$	0.93	2.43	3.075 (3)	126
$C9-H9\cdots Cg^{iv}$	0.93	2.71	3.603 (8)	161

Symmetry codes: (i) $x, -y - \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) -x, -y, -z + 2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support by the Science Project of the Hebei Education Department (grant No. 2005350) and the Natural Science Foundation of Hebei Province (grant No. B2007000156) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2469).

References

Amendola, V., Boiocchi, M., Fabbrizzi, L. & Palchetti, A. (2005). *Chem. Eur. J.* **11**, 120–127.

Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

- Hannan, S. S. & Talukdar, A. N. (1992). Acta Cryst. C48, 2021-2023.
- Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, 03437-03439.
- Li, J. S. (2007). PhD Dissertation, Tianjin University, People's Republic of China.
- Lindley, P. F., Mahmoud, M. M., Dodd, C., Smith, C. H., Boyd, G. V. & Norris, T. (1977). Acta Cryst. B33, 2160–2164.
- Schaumann, E., Rohr, A., Sieveking, S. & Walter, W. (1975). Angew. Chem. Int. Ed. Engl. 14, 493.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3720 [doi:10.1107/S1600536807037713]

A zwitterionic form of N-(4-pyridyl)benzenesulfonamide

H.-J. Yu, J.-Z. Chen, J. Simpson, J.-S. Li and G.-Y. Bai

Comment

In the solid state *N*-(4-pyridyl)benzenesulfonamide exists as a zwitterion with the pyridine N protonated and the amide N deprotonated, Fig. 1. The short N2—C3 bond, 1.333 (3) Å, indicates a degree of conjugation between the deprotonated N atom and the pyridinium ring. The angle between the pyridinium ring and the major disorder component of the benzene ring is 84.5 (3)°. Aryl sulphonamides with the amide N atom deprotonated have been reported previously, both as salts with suitable cations (Heren *et al.*, 2006; Hannan & Talukdar, 1992) and in zwitterionic forms (Amendola *et al.*, 2005.; Lindley *et al.*, 1977; Schaumann *et al.*, 1975).

Intermolecular N—H···N hydrogen bonds link the molecules into chains along the *c* axis. Weak C—H···O interactions and a C9—H9···*Cg* π -interaction (C9···*Cg* = 3.603 (8) Å, C9—H9···*Cg* = 161°) further stabilize the structure (*Cg* is the centroid of the pyridinium ring).

Experimental

The title compound was prepared using the method of Li (2007). Colourless single crystals were grown by slow evaporation of a solution in methanol.

Refinement

All H-atoms bound to carbon were refined using a riding model with d(C-H) = 0.93 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atom on the N atom of the pyridinium ring was located in a difference map and refined with the distance restraint N-H = 0.82 (3) Å and with $U_{iso}(H) = 1.5 U_{eq}(N)$. The benzene ring is disordered and the two disorder components were refined as rigid groups; their site occupancies refined to 0.56 (4) and 0.44 (4) respectively.

Figures

Fig. 1. The molecular structure with the atom-numbering scheme and 30% probability displacement ellipsoids. Only the major component of the disordered benzene ring is shown.

Fig. 2. Packing diagram with hydrogen bonds drawn as dashed lines.

N-(4-pyridinio)benzenesulfonamidate

Crystal data $C_{11}H_{10}N_2O_2S$ $F_{000} = 488$ $M_r = 234.27$ $D_{\rm x} = 1.498 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/c$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 2352 reflections *a* = 12.238 (6) Å $\theta = 3.3 - 26.5^{\circ}$ b = 7.459 (4) Å $\mu = 0.30 \text{ mm}^{-1}$ c = 12.124 (6) Å T = 294 (2) K $\beta = 110.231 (7)^{\circ}$ Block, colourless V = 1038.5 (8) Å³ $0.20\times0.16\times0.12~mm$ Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer	2139 independent reflections
Radiation source: fine-focus sealed tube	1685 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 294(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 11$
$T_{\min} = 0.943, T_{\max} = 0.965$	$k = -9 \rightarrow 7$
5733 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 0.6075P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
2139 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
180 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
73 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direc methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y **S**1 0.0360(2) 0.31544 (6) 0.92018 (5) 0.16315 (8) 01 0.37860 (16) 0.2910(2) 1.00505 (15) 0.0434 (5) 02 0.31798 (19) 0.0525 (5) 0.1853 (2) 0.80497 (15) N1 0.37226 (18) -0.2772(3)1.26144 (18) 0.0359(5)N2 0.35106 (17) -0.0376(3)0.95349 (16) 0.0335 (5) C6 0.59(4)0.1697(5)0.1746 (11) 0.9082(8)0.030(3)C7 0.0798 (9) 0.8225(7) 0.59(4)0.0865(11) 0.053(2)H7 0.0953 0.0206 0.76440.063* 0.59(4) C8 -0.0333(7)0.0967 (12) 0.8235(11) 0.061(3)0.59(4)H8 -0.09340.0377 0.7662 0.074* 0.59(4)C9 -0.0565(4)0.1951 (14) 0.9103 (13) 0.59(4) 0.058 (2) H9 -0.13210.2020 0.9110 0.069* 0.59(4)C10 0.0334 (9) 0.2833 (14) 0.9960 (9) 0.064(2)0.59(4) H10 0.0179 0.3492 0.077* 1.0541 0.59(4) C11 0.1465 (6) 0.2731 (11) 0.9950(7) 0.060(3)0.59(4) H11 0.2066 0.3321 1.0523 0.072* 0.59(4)C1 0.3656(2) -0.1014 (3) 1.2553 (2) 0.0374 (6) H1 0.3650 -0.03701.3207 0.045* C2 0.3596(2) -0.0120(3)1.15722 (19) 0.0342 (5) H2 0.041* 0.3545 0.1125 1.1553 C3 0.36113 (19) -0.1056(3)1.05825 (19) 0.0289 (5) C4 0.3726(2) -0.2902(3)1.0710(2) 0.0353 (5) H4 0.3777 -0.35871.0089 0.042* 0.0347 (5) C5 0.3765 (2) -0.3719(3)1.1703 (2) Н5 0.3823 -0.49611.1756 0.042* C6' 0.1758 (6) 0.180(2) 0.9147 (12) 0.057(7) 0.41 (4) C7' 0.1019 (13) 0.090(2)0.8167 (11) 0.066 (4) 0.41(4)H7' 0.1320 0.0348 0.7646 0.079* 0.41 (4) C8' -0.0169(11)0.0831 (17) 0.7966 (13) 0.071 (4) 0.41 (4) H8' -0.06640.0232 0.7310 0.086* 0.41(4)C9' -0.0619(5)0.1657 (18) 0.8744 (17) 0.051 (3) 0.41 (4) H9' -0.14140.1610 0.8610 0.062* 0.41(4)C10' 0.0120(11) 0.2552 (18) 0.9724 (13) 0.043(3)0.41(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H10'	-0.0181	0 3105	1 024	5	0.051*	0 41 (4)
C11'	0 1309 (9)	0.2622 (16	0.992	5 (9)	0.034(3)	0.11(1) 0.41(4)
H11'	0.1803	0.3221	1 058	1	0.041*	0.41(4)
HIA	0.375(3)	-0.329(4)	1 322	(3)	0.057 (9)*	0.11(1)
	0.270 (2)	0.022 (1)	1.0==			
Atomic displa	acement parameters	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0568 (4)	0.0243 (3)	0.0332 (3)	-0.0001 (3)	0.0234 (3)	0.0018 (2)
01	0.0572 (11)	0.0299 (9)	0.0479 (10)	-0.0077 (8)	0.0244 (9)	-0.0067 (8)
02	0.0938 (15)	0.0371 (10)	0.0399 (10)	0.0064 (10)	0.0401 (10)	0.0112 (8)
N1	0.0484 (13)	0.0345 (11)	0.0257 (10)	-0.0010 (9)	0.0141 (9)	0.0041 (9)
N2	0.0531 (12)	0.0253 (10)	0.0277 (10)	0.0026 (9)	0.0210 (9)	0.0008 (8)
C6	0.039 (3)	0.020 (3)	0.028 (3)	0.002 (2)	0.008 (2)	0.003 (2)
C7	0.051 (4)	0.057 (4)	0.046 (3)	-0.002 (3)	0.011 (3)	-0.012 (3)
C8	0.051 (3)	0.076 (4)	0.052 (4)	-0.006 (3)	0.011 (3)	-0.016 (3)
C9	0.055 (3)	0.062 (4)	0.051 (4)	0.001 (3)	0.013 (3)	-0.009 (3)
C10	0.055 (4)	0.060 (4)	0.072 (4)	-0.003 (3)	0.014 (3)	-0.010 (3)
C11	0.056 (4)	0.061 (5)	0.068 (5)	0.001 (3)	0.028 (3)	-0.002 (3)
C1	0.0530 (15)	0.0360 (13)	0.0255 (11)	-0.0030 (11)	0.0165 (10)	-0.0040 (10)
C2	0.0491 (14)	0.0263 (11)	0.0291 (12)	-0.0019 (10)	0.0161 (10)	-0.0033 (9)
C3	0.0338 (12)	0.0280 (11)	0.0269 (11)	-0.0011 (9)	0.0130 (9)	-0.0004 (9)
C4	0.0520 (15)	0.0292 (12)	0.0282 (11)	0.0031 (10)	0.0184 (10)	-0.0021 (10)
C5	0.0454 (14)	0.0276 (12)	0.0327 (12)	0.0033 (10)	0.0156 (10)	0.0009 (10)
C6'	0.068 (8)	0.048 (8)	0.049 (8)	-0.001 (5)	0.015 (4)	0.003 (4)
C7'	0.055 (5)	0.071 (6)	0.068 (6)	-0.006 (4)	0.017 (4)	0.001 (4)
C8'	0.064 (5)	0.080 (5)	0.073 (5)	-0.002 (4)	0.028 (4)	-0.007 (4)
C9'	0.045 (4)	0.058 (4)	0.048 (5)	0.001 (3)	0.012 (3)	-0.006 (4)
C10'	0.035 (4)	0.042 (4)	0.051 (5)	-0.003 (3)	0.016 (3)	-0.012 (3)
C11'	0.032 (4)	0.032 (4)	0.039 (4)	-0.003 (3)	0.011 (3)	-0.010 (3)
Geometric po	arameters (Å, °)					
S1—O2		1.4174 (19)	C1—	C2	1.1	343 (3)
S101		1.4195 (18)	C1—	H1	0.1	9300
S1—N2		1.573 (2)	C2—	C3	1.1	394 (3)
S1—C6'		1.692 (5)	C2—	H2	0.	9300

S1—C6'	1.692 (5)	C2—H2	0.9300
S1—C6	1.742 (4)	C3—C4	1.387 (3)
N1-C1	1.315 (3)	C4—C5	1.335 (3)
N1C5	1.328 (3)	C4—H4	0.9300
N1—H1A	0.82 (3)	С5—Н5	0.9300
N2—C3	1.333 (3)	C6'—C7'	1.3900
C6—C7	1.3900	C6'—C11'	1.3900
C6—C11	1.3900	C7'—C8'	1.3900
С7—С8	1.3900	С7'—Н7'	0.9300
С7—Н7	0.9300	C8'—C9'	1.3900
С8—С9	1.3900	C8'—H8'	0.9300
С8—Н8	0.9300	C9'—C10'	1.3900
C9—C10	1.3900	С9'—Н9'	0.9300

С9—Н9	0.9300	C10'—C11'	1.3900
C10—C11	1.3900	C10'—H10'	0.9300
С10—Н10	0.9300	C11'—H11'	0.9300
C11—H11	0.9300		
O2—S1—O1	116.35 (12)	N1—C1—H1	119.0
O2—S1—N2	105.41 (11)	C2—C1—H1	119.0
01—S1—N2	114.85 (11)	C1—C2—C3	120.0 (2)
O2—S1—C6'	108.6 (5)	C1—C2—H2	120.0
O1—S1—C6'	105.6 (4)	С3—С2—Н2	120.0
N2—S1—C6'	105.4 (5)	N2—C3—C4	117.2 (2)
O2—S1—C6	106.4 (3)	N2—C3—C2	127.2 (2)
O1—S1—C6	108.2 (3)	C4—C3—C2	115.6 (2)
N2—S1—C6	104.7 (3)	C5—C4—C3	121.6 (2)
C1—N1—C5	120.2 (2)	С5—С4—Н4	119.2
C1—N1—H1A	120 (2)	C3—C4—H4	119.2
C5—N1—H1A	119 (2)	N1—C5—C4	120.5 (2)
C3—N2—S1	122.23 (16)	N1—C5—H5	119.7
C7—C6—C11	120.0	C4—C5—H5	119.7
C7—C6—S1	124.2 (6)	C7'—C6'—C11'	120.0
C11—C6—S1	115.7 (6)	C7'—C6'—S1	110.4 (9)
C6—C7—C8	120.0	C11'—C6'—S1	129.6 (9)
С6—С7—Н7	120.0	C8'—C7'—C6'	120.0
С8—С7—Н7	120.0	C8'—C7'—H7'	120.0
С7—С8—С9	120.0	C6'—C7'—H7'	120.0
С7—С8—Н8	120.0	C7'—C8'—C9'	120.0
С9—С8—Н8	120.0	C7'—C8'—H8'	120.0
C8—C9—C10	120.0	C9'—C8'—H8'	120.0
С8—С9—Н9	120.0	C10'—C9'—C8'	120.0
С10—С9—Н9	120.0	С10'—С9'—Н9'	120.0
C11—C10—C9	120.0	C8'—C9'—H9'	120.0
C11—C10—H10	120.0	C9'—C10'—C11'	120.0
C9—C10—H10	120.0	C9'—C10'—H10'	120.0
C10—C11—C6	120.0	C11'—C10'—H10'	120.0
C10-C11-H11	120.0	C10'—C11'—C6'	120.0
C6—C11—H11	120.0	C10'—C11'—H11'	120.0
N1—C1—C2	122.0 (2)	C6'—C11'—H11'	120.0
O2—S1—N2—C3	178.12 (19)	S1—N2—C3—C2	-10.0 (3)
O1—S1—N2—C3	48.7 (2)	C1—C2—C3—N2	177.0 (2)
C6'—S1—N2—C3	-67.1 (5)	C1—C2—C3—C4	-1.9 (3)
C6—S1—N2—C3	-69.8 (3)	N2-C3-C4-C5	-176.1 (2)
O2—S1—C6—C7	45.2 (5)	C2—C3—C4—C5	2.9 (4)
O1—S1—C6—C7	170.9 (4)	C1—N1—C5—C4	-0.9 (4)
N2—S1—C6—C7	-66.2 (5)	C3—C4—C5—N1	-1.6 (4)
C6'—S1—C6—C7	-173 (18)	O2—S1—C6'—C7'	41.3 (6)
O2—S1—C6—C11	-137.9 (4)	O1—S1—C6'—C7'	166.7 (5)
O1—S1—C6—C11	-12.1 (5)	N2—S1—C6'—C7'	-71.3 (6)
N2—S1—C6—C11	110.8 (4)	C6—S1—C6'—C7'	3(17)
C6'—S1—C6—C11	4(17)	O2—S1—C6'—C11'	-140.4 (9)

supplementary materials

C11—C6—C7—C8	0.0	O1—S1—C6'—C11'	-14.9 (11)
S1—C6—C7—C8	176.9 (6)	N2—S1—C6'—C11'	107.0 (9)
C6—C7—C8—C9	0.0	C6—S1—C6'—C11'	-179 (18)
C7—C8—C9—C10	0.0	C11'—C6'—C7'—C8'	0.0
C8—C9—C10—C11	0.0	S1—C6'—C7'—C8'	178.5 (10)
C9—C10—C11—C6	0.0	C6'—C7'—C8'—C9'	0.0
C7—C6—C11—C10	0.0	C7'—C8'—C9'—C10'	0.0
S1—C6—C11—C10	-177.1 (6)	C8'—C9'—C10'—C11'	0.0
C5—N1—C1—C2	1.9 (4)	C9'—C10'—C11'—C6'	0.0
N1—C1—C2—C3	-0.4 (4)	C7'—C6'—C11'—C10'	0.0
S1—N2—C3—C4	168.89 (18)	S1—C6'—C11'—C10'	-178.2 (13)

Hydrogen-bond geometry (Å, °)

···A
)

Symmetry codes: (i) *x*, -*y*-1/2, *z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*, *y*-1, *z*; (iv) -*x*, -*y*, -*z*+2.

Fig. 2

